
Earthquake Engineering in Australia, Canberra 24-26 November 2006

127

Validation of using Gumbel probability plotting to
estimate Gutenberg-Richter seismicity parameters

Mike Turnbull1 and Dion Weatherley2

1 Central Queensland University
2 Queensland University

Abstract:
The Gumbel Type I statistics of extreme events have been successfully used in the past
to forecast various natural events such as annual exceedence of design flood level, and
hail fall. Some attempts have been made to determine seismicity parameters using the
annual maximum magnitude events in historic records. The results from these
determinations have invariably been criticized for various reasons, including the
perception that the methodology ignores important data, and that the method has no
verification basis. This paper addresses both topics by discussing the principles of the
Gumbel Type I statistical method, and verifying that the method is capable of reliably
deducing the Gutenberg-Richter seismicity parameters of complete synthetic earthquake
calendars, using only the annual maxima.

Introduction
It is common to characterize temporal and quantitative earthquake seismicity of a region
by respectively specifying values for the a and b parameters of the Gutenberg-Richter
seismicity model (the G-R model). Estimations of these parameters can be derived from
a number of statistical processes. In situations where a comprehensively complete
catalogue of earthquake events is not available, methods provided by the statistics of
extreme events (the so-called extreme value theory (EVT)) have been applied, using
reduced variate probability plotting.

The generalized EVT cumulative distribution function (cdf) reduces to one of three
specific Fisher Tippett distributions (Fisher & Tippett, 1928), depending on the value
chosen for its three parameters, ξ , θ(> 0), and k(>0). These three distributions are
summarized below (Johnson et al, 1995).

Fisher Tippett Type 1:
Pr[X ≤ x] = exp{-exp{-1/θ(x – ξ)}} … Eq. 1

Fisher Tippett Type 2:
Pr[X ≤ x] = 0, where x < ξ … Eq. 2
= exp{-exp{-(1/θ(x – ξ))k}}, where x ≥ ξ

Fisher Tippett Type 3:
Pr[X ≤ x] = {-exp{-(1/θ(ξ - x))k}}, where x ≤ ξ … Eq. 3
= 1, where x > ξ

The Type 2 distribution is often referred to as the Fréchet distribution. The Type 3
distribution is often referred to as the Weibull distribution. The Type 1 distribution is
mostly referred to as the Gumbel distribution, but is sometimes referred to as the log-
Weibull distribution. In this paper it will be referred to as the Gumbel distribution.

There are two common criticisms made, arguing that the probability plotting method of
analysing extreme events to estimate regional seismicity is of little value to practical
seismology. These criticisms are that:

1. The extreme value methods only assess the few maximum value events and ignore
the many other important smaller events.

2. The various methods of determining the plotting positions used to calculate the
reduced variate are arbitrary in nature. Therefore the choice of plotting position
algorithm can be used to manipulate the results.
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This paper addresses these two criticisms via counter-arguments and a demonstration
that the reduced variate probability plotting method in conjunction with Gumbel statistics
of extreme events can reproduce accurate estimates of a priori seismicity parameters
used to generate synthetic earthquake calendars. Our analysis consists of two parts.
Firstly we demonstrate that the probability plotting method estimates to within 2%
accuracy, the Gumbel parameters of a synthetic dataset constructed with a priori values
of these parameters. Secondly we apply the Gumbel method to analyse synthetic
seismicity calendars generated from a Gutenberg-Richter distribution with prescribed a-
and b-values. Our results testify that the Gumbel method accurately estimates the a and
b values of the underlying G-R source distribution, via statistical analysis of only the
extreme values of the synthetic catalogues.

Are important data being ignored?
Statistical analysis aims to provide an accurate model for a given set of observations,
using some assumptions about the underlying process giving rise to the observations. In
the case of regional seismicity, one assumes the underlying process gives rise to a
Gutenberg-Richter frequency-magnitude distribution: a two-parameter model
determining the average rate of seismicity (a value) and the scaling of recurrence
intervals with given earthquake magnitude (b value). For a particular region, one aims to
estimate the values for these two parameters via curve fitting of the observed historical
seismicity. Since the dataset of observations is invariably only a small subset (or
sampling) of the seismic history and the observations may contain errors (e.g. imprecise
magnitude determination or poor detection level) one cannot expect to obtain an
arbitrarily accurate estimation of the model parameters.

It is well-known that estimated values for the model parameters may be significantly
skewed when using a dataset which does not provide a sample a data set containing
adequate samples of the full range of observable values. Seismicity particularly suffers
from this limitation as historical seismic catalogues are typically complete for large
magnitudes (the extreme values of the G-R distribution) but incomplete or non-existent
for smaller magnitudes. Historical catalogues are biased towards extreme values.

The Fisher-Tippett probability distributions are specifically formulated to model the
extreme data values that are invariably found in samples extracted from underlying
source distributions. EV distributions provide a parameterisation for the extreme values
that is related to the parameters of the source distribution, while taking into account the
inherent bias towards extreme values in the dataset under analysis. It was Fisher and
Tippet (1928) who proved that no matter what source probability distribution data is
derived from, the distribution of extreme data values will necessarily converge to one of
the three forms Eq. 1, 2 or 3.

The perception that extreme value methods ignore important small value data is false.
EV methods are designed to model the distribution of extreme values accurately, not the
distribution of non-extreme values. Including these latter values in the analysis would be
erroneous. Since the dataset of extreme values is complete, one does not suffer from the
finite sampling issues when estimating the parameters of the EV distribution. It must be
emphasised that EV methods make allowance for the bias towards extreme values in the
original dataset. This is codified in the relationship between EV model parameters and
those of the source distribution. Thus it is possible, by analysing a catalogue of extreme
values, to accurately estimate the parameters of the source distribution. Given the
indisputable bias towards large magnitudes in seismic catalogues, EV methods are well-
suited for modelling regional seismicity.

The probability integral transformation theorem
The theorem of probability integral transformation states that any cumulative distribution
function, considered as a function of its random variable X, is itself a uniform random
variable on the closed interval (0,1) (Bury, 1999, p 25).
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F(X; θ) = U … (Eq. 4)

where θ represents parameters, either known or not yet determined.

A consequence of this theorem is that all possible values of X are equally likely. So that
any sample variate F(xi; θ) derived from the parent distribution F(X; θ) can be expressed
in the form:

F(xi; θ) = ui … (Eq. 5)

where ui is a value in the closed interval (0, 1), and where all values of ui are equally
likely.

A corollary of the probability integral transformation theorem is that:

xi = F-1(ui; θ) (Eq. 6).

This corollary has two important applications in practice – simulated random
observations, and probability plotting.

Simulating random variates

The corollary of the probability integral transformation theorem provides a means of
simulating random variates from any known probability distribution. By substituting
random numbers ui from the closed (0, 1) interval into the inverse of the distribution’s
cumulative distribution function, independent identically distributed random variates can
be generated.

For example (Bury, 1999, p 268), the cdf of the Gumbel distribution may be expressed in
the form

F(x; µ, σ) = exp{-exp{-1/ σ (x - µ)}} = u  (say). (Eq. 7)

By inversion

x = µ - σln(-ln(u)) (Eq.8)

Therefore, simulated random variates xi from the Gumbel distribution can be generated
using the following formula, where ui is a random number on the closed interval (0, 1).

xi = µ - σln(-ln(ui)) (Eq.9)

Probability plotting

Manipulation of Eq. 9 produces the following linear relation.

-ln(-ln(pi)) = 1/σ (xi - µ) (Eq.10)

where the u notation has been replaced by a p, for reasons that will become clear below.

This relation provides a potential means of testing whether a set of n experimental
observations {xi}n is a sample from a Gumbel distribution. If the reduced variates {-ln(-
ln(pi))}n are plotted against the experimental observations {xi}n, and a straight line
graph results, then the postulated Gumbel parent distribution is confirmed, and ordinary
linear regression can be used to estimate the parameters σ and µ from the slope and
intercept. There is one difficulty in accomplishing this task. In any real experimental
situation the observations {xi}n are known, but the n reduced variates {-ln(-ln(pi))}n
cannot be calculated exactly because the plotting positions {pi}n are unknown.

The only things that can be assumed regarding the pi values is that they are in the closed
interval (0, 1), and that each value has equal likelihood of presence. This information
suggests a widely used, but controversial, method for producing artificial plotting
positions that can be substituted for the actual ones. The method used to determine the
substitute plotting positions can be described as follows.

The n observations are first ordered and ranked according to their relative values.
Depending on the requirements of the particular situation this ranking may be in
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ascending or descending order. The examples described here will use ascending order.
The ordered observations are notated as

{xi}*n _ {x1 ≤ x2 ≤ x3 ≤ …  ≤ xn-2 ≤ xn-1 ≤ xn}

where x1 is the smallest valued variate, xn is the largest valued variate, and the subscript
values are the variate ranks.

The next step is the controversial part of the method. The rank value of the mth ordered
variate is used to determine an artificial plotting position quantile pm for that variate.
There is no single definitive formula or equation for doing this. However, there are
guidelines for doing so.

Gumbel (1958) expressed the following five conditions as requirements that substitute
plotting positions should necessarily fulfil.

1. The plotting position should be such that all observations can be plotted.
2. The plotting position should lie between the observed frequencies (m – 1)/n and m/n

and should be universally applicable, i.e., it should be distribution-free. This excludes
the probabilities of the mean, median, and modal mth value which differ for different
distributions.

3. The return period of a value equal to or larger than the largest observation, and the
return period of a value smaller than the smallest observation, should approach n,
the number of observations. This condition need not be fulfilled by the choice of the
mean and median mth value.

4. The observations should be equally spaced on the frequency scale, i.e., the difference
between the plotting positions of the (m + 1)th and the mth observation should be a
function of n only, and independent of m. This condition … need not be fulfilled for the
probabilities at the mean, median, or modal mth values.

5. The plotting position should have an intuitive meaning, and ought to be analytically
simple. The probabilities at the mean, modal, or median mth value have an intuitive
meaning. However, the numerical work involved is prohibitive [at the time of writing.
Current computing capabilities now make these calculations routine].

The simplest approach is to assume that the value of the plotting position quantile is
equal to its fractional position in the ranked list, m/n. This would assign the quantile 1/n
to the smallest plotting position and n/n = 1 to the largest. This is unsatisfactory because
it leaves no room at the upper end for values greater than the largest variate observed
thus far.

Most plotting position formulae are ratios of the form (m ± a)/(n ± b) where the addends
and subtrahends are chosen to improve estimates in the extreme tails of the postulated
distribution.

Gumbel (ibid) recommended the following quantile formulation, which calculates the
mean frequency of the mth variate.

pm = m / (n + 1) … (Eq. 11)

This formulation ensures that any plotting position is as near to the subsequent one as it
is to the previous. It also produces a symmetrical sample cdf in the sense that the same
plotting positions will result from the data regardless of whether they are assembled in
ascending or descending order.

A more sophisticated formulation is

pm = (m – 0.3) / (n + 0.4) … (Eq. 12)

This formulation approximates the median of the distribution free estimate of the sample
variate to about 0.1% and, even for small values of n, produces parameter estimations
comparable to the results obtained by maximum likelihood estimations (Bury, 1999, p
43).
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Using the Gumbel distribution to model extreme earthquakes
Cinna Lomnitz (1974) showed that if an homogeneous earthquake process with
cumulative magnitude distribution

F(m; β) = 1 - e- β m;   m ≥ 0 (Eq. 13)

is assumed (compare with Eq. 24), where β is the inverse of the average magnitude of
earthquakes in the region under consideration; and α is the average number of
earthquakes per year above magnitude 0.0; then y, the maximum annual earthquake
magnitude, will be distributed according to the following Gumbel cdf.

G(y; α, β) = exp(-α exp(-β y));   y ≥ 0 ... (Eq. 14)

Using the probability integral transformation theorem, simulated maximum yearly
earthquakes can be generated using the following inversion formula.

yi = -(1/β) ln((1/α) ln(1/ui)) ... (Eq. 15)

The conversion factors to transform Eq. 4 and 6 to Eq. 11 and 12 are as follows.

α = exp(µ / σ) ... (Eq. 16)
β = 1 / σ ... (Eq. 17)

Conversely:

σ = 1 / β ... (Eq. 18)
µ    = (1/β)  ln(α) ... (Eq. 19)

Manipulation of Eq. 15 produces the following linear relation.

-ln(-ln(pi)) = β yi  - ln(α) … (Eq. 20)

where p represents the plotting position, and the left hand expression is the reduced
variate that can be used to plot data that is postulated as being drawn from a Gumbel
distribution.

Demonstration of Gumbel probability plotting
Eq. 15 was used to generate ten random, one thousand year catalogues of synthetic
annual extreme earthquake magnitudes, using the input parameters α = 48, and β =
1.37. Each set of data was analysed by plotting Eq. 20, with the plotting positions
determined using both Eq. 11 and 12. Figures 1a and 1b show one of the ten resulting
graphical plots obtained using each plotting method. The dotted lines in Figure 1 are the
ordinary linear regression approximations. The linear approximation equations and
coefficients of linear determination (r2) are shown at the top right hand corner of each
graph. The visual interpretation of the graph is that, for the majority of the lower
magnitude data, the Gumbel distribution is appropriate; but, for magnitudes above about

Gumbel Plot using plotting position G(y) = j/(N+1) y = 1.3132x - 3.7419
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Figure 1(a): Gumbel Probability Plot using i/(n+1) Figure 1(b): Gumbel Probability Plot using
(i-0.3)/(n+0.4)
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6.0 (i.e. for the extreme of the extreme values), the assumption of a Gumbel distribution
may be suspect (in fact, a Weibull analysis may be more appropriate for those data).

Estimations of α and β were made using ordinary linear regression of each set of data.
Table 1 summarises the resulting approximations, as well as showing the average and
standard deviations of the estimated parameters.

Table 1: Parameter estimations using Gumbel Probability Plotting

It is evident that both plotting
methods can estimate α and β
within standard relative errors
o f  2 .4% and 0 .7%
respectively, if sufficient trials
are made. It is expected that
trials with a larger number of
data sets would improve the
relative errors.

In real situations it may only
be possible to extract a single
useful data set from the
earthquake history. This will
l imit the precision of
parameter estimation in
p rac t i c e .  Fo r  s i ng l e
estimations, there is a 95%
confidence that α and β  can
be estimated within two

standard deviations of the averages quoted in Table 1. That is, within 15% and 5%
respectively.

It is clear from this demonstration that the fundamental method of probability plotting is
scientifically sound in that it can reproduce accurate approximations of underlying
process model parameters (at least for the two plotting position formulations used in this
demonstration).

It is pointed out that the forgoing error analysis pertains to the method itself. Other
errors in the inferred results of particular analyses may be introduced by faulty data. In
particular incorrect determination of earthquake magnitudes may adversely affect
inferred results.

Demonstration of Gutenberg-Richter parameter estimation
using the Gumbel distribution
Background Theory

The Gutenberg-Richter (G-R) seismicity relation of earthquake frequency versus
magnitude may be expressed as:

N(m ≥ M) = 10(a – b m) … (Eq. 21)

where N(m ≥ M) is the number of earthquakes observed having magnitudes greater than
or equal to M; and a and b are parameters specific to the observed data set. As a
pragmatic mathematical and practical choice, the lower limit of M, M0 is usually assigned
the value zero. In that formulation the parameter a represents the logarithm to the base
10 of the number of independent earthquakes in the observation period with magnitude
greater than or equal to zero.

a = log10 N(m ≥ M0) => N(m ≥ M0) = 10a … (Eq. 22)

_ _Parameter
estimation pi=i/(n+1) pi=(i-0.3)

/(n+0.4)
pi=i/(n+1) pi=(i-0.3)

/(n+0.4)

Data Set 1 42.17857 43.06256 1.313218 1.319945

Data Set 2 44.00797 45.03307 1.328423 1.335858

Data Set 3 44.30699 45.27417 1.338465 1.345506

Data Set 4 51.20298 52.48388 1.409218 1.417366

Data Set 5 41.95601 42.79609 1.317657 1.324136

Data Set 6 49.80841 50.87322 1.374311 1.381216

Data Set 7 47.47786 48.46969 1.362259 1.369031

Data Set 8 50.64748 51.86245 1.382438 1.390142

Data Set 9 42.62512 43.62954 1.33023 1.337812

Data Set 10 43.24977 44.15485 1.348617 1.355476

Average 45.75 46.76 1.35 1.36

Std Dev 3.49 3.60 0.03 0.03

Std Error 1.10 1.14 0.0095 0.0095

Rel Error 2.4% 2.4% 0.7% 0.7%

Exact Value 48.00 48.00 1.37 1.37
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If it is assumed that all earthquake included in the data set are independent, and that
each event has equal probability of occurring, then Eq. 21 can be normalised to produce
a frequency relation as follows,

Pr(m ≥ M) = N(m ≥ M)/ N(m ≥ M0) = 10(a – b m) 10-a  = 10– b m …(Eq. 23)

It can be seen from Eq. 23 that the value of the parameter b determines the propensity
for lower or higher magnitude earthquakes. Smaller values of b model a system that has
a greater propensity for larger magnitude earthquakes. It also demonstrates that
magnitude of the earthquakes is not dependent on the a parameter. The cdf formulation
is as follows.

Pr(m ≤ M) = 1 - 10– b m … (Eq. 24)

Using the probability integral transformation theorem, Eq. 24 can be inverted to produce
a random magnitude generator

m = -1/b log10(1 - u) … (Eq. 25)

where u is a random number in the closed (0, 1) interval.  Eq 25 also provides the
reduced variate for conducting a G-R plot to test whether a data set is drawn from a G-R
distribution.

If it is further assumed that the timing of the earthquake events is a Poisson process,
then a random event generator can be devised (c.f. Bury, 1999, p 104).

t =  -10-a ln(v) … (Eq. 26)

where t is a random time interval between events, v is a random number in the closed
(0, 1) interval, and 10-a is the average time between events.

From Eqs. 13 and 24, and the fact that α and 10a specify the average time between
events in the Gumbel and G-R formulations respectively, the relationships between the
Gumbel parameters α and β and the G-R parameter a and b are seen to be

e-β = 10-b => b = β log10e … (Eq. 27)
α = 10a => a = log10α … (Eq. 28)

Using the same parameter values that were employed in the demonstration of Gumbel
plotting, if α = 48, then a ≈ 1.69; and if β = 1.37, then b ≈ 0.59.

Simulated G-R catalogues

Using Eqs. 25 and 26, with a = 1.69 and b = 0.59, eleven 131 year catalogues of
earthquake events were generated. Figures 2(a) and 2(b) show analysis of one typical

Simulated G-R Frequency/Magnitude with a = 1.69 b = 0.59  
y = -0.5395x + 1.6833
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Figure 2(a) : G-R Frequency/Magnitude chart Figure 2(b) : G-R Probability Plot
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year of synthetic earthquakes using the Gutenberg-Richter frequency/magnitude
method, and with a Gutenberg-Richter reduced variate plot.

Linear regression of the data used in Figure 1(a) estimates a to be approximately 1.68,
and b to be about 0.54: which agrees with the actual input parameters used to generate
the data. Similar linear analysis of the data plot in Figure 2(b) estimates the b parameter
to be 0.52.

Visual inspection of Figure 2(b) shows that, although it is reasonable to use the G-R
relation to analyse the earthquakes with synthetic magnitudes up to 1.3, events above
that magnitude should not be so treated in this particular case.

Figures 3(a) and 3(b) show analysis of the same 131 year of synthetic earthquakes using
the Gumbel extreme event method, with the full annual extreme data set, and with the
extreme of the annual extreme values truncated.

Tables 2 and 3 provide a listing of the a and b parameter estimations and averages
obtained using the Gumbel extreme value method of analysis, from the full extreme data
set, and with the extreme of the extreme values omitted. It can be seen that both
methods are capable of recovering the a priori parameter values, and that using the full
data set provides the better relative errors.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Avg Rel Err

a 1.79 1.51 1.67 1.71 1.76 1.70 1.89 1.57 1.61 1.63 1.55 1.67 1.8%

b 0.62 0.52 0.56 0.61 0.64 0.59 0.65 0.56 0.56 0.58 0.55 0.59 1.7%

Table 2: Parameter estimations and average using full extreme data set.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Avg Rel Err

a 1.64 1.59 1.62 1.70 2.00 1.71 1.82 1.64 1.69 1.59 1.58 1.69 2.4%

b 0.56 0.54 0.55 0.61 0.72 0.60 0.63 0.59 0.58 0.57 0.55 0.59 3.4%

Table 3: Parameter estimation and averages using truncated data set.

Summary
It has been demonstrated that analysis of multiple synthetic earthquake catalogues,
derived from a Gumbel seismicity model, using Gumbel distribution plotting of annual
extreme earthquake magnitudes, is capable of estimating the a priori a and b parameters
values within a relative error of 2%. There is a 95% confidence that individual
estimations of α and β will be within 15% and 5% respectively of the true value.

Acceptable parameter estimates are obtained using either full annual extreme data sets,
or truncated data sets with the extreme of the extreme values omitted from the data
plot, but the full data set provides smaller relative errors.

Gumbel plot of annual extreme events catalogue 01 y = 1.4207x - 4.1209

R2 = 0.9805

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

Maximum annual magnitude (M)

R
ed

u
ce

d
 v

ar
ia

te
(-

L
N

(-
L

N
((

i-
0.

3)
/(

N
+

0.
4)

)

Gumbel plot of truncated annual extreme events catalogue 01y = 1.2987x - 3.7658
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Figure 3(a) : Gumbel analysis full data set Figure 3(b) : Gumbel analysis truncated data set
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